a2 United States Patent

Plotnikov et al.

US009400650B2

US 9,400,650 B2
Jul. 26, 2016

(10) Patent No.:
(45) Date of Patent:

(54) READ AND WRITE MASKS UPDATE
INSTRUCTION FOR VECTORIZATION OF
RECURSIVE COMPUTATIONS OVER
INTERDEPENDENT DATA

(71) Applicant: Intel Corporation, Santa Clara, CA
(US)

(72) Inventors: Mikhail Plotnikov, Nizhny Novgorod
(RU); Andrey Naraikin, Nizhny
Novgorod (RU); Christopher Hughes,
Santa Clara, CA (US)

(73) Assignee: INTEL CORPORATION, Santa Clara,
CA (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 861 days.

(*) Notice:

(21) Appl. No.: 13/630,247

(22) Filed: Sep. 28, 2012
(65) Prior Publication Data
US 2014/0095837 Al Apr. 3,2014
(51) Imt.ClL
GO6F 9/30 (2006.01)
(52) US.CL
CPC ... GOG6F 9/30036 (2013.01); GO6F 9/30018

(2013.01); GOG6F 9/30032 (2013.01)
(58) Field of Classification Search
CPC combination set(s) only.
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,046,692 A 4/2000 Yamashiro et al.
6,122,728 A 9/2000 Leibholz et al.
6,256,782 B1* 7/2001 Nakamura GOG6F 8/447
717/151
6,532,533 B1* 3/2003 Bhandal GO6F 9/30101
711/163
6,711,665 Bl 3/2004 Akerib et al.
7,058,794 B2 6/2006 Col et al.
2003/0126419 Al* 7/2003 Gaococevvvrrnnen GOG6F 9/4812
712/244
2004/0230626 Al* 11/2004 Busaba GOG6F 7/764
708/233
2007/0008561 Al* 1/2007 Kanda GO6F 3/1212
358/1.9
2009/0323439 Al* 12/2009 Kuenemund Gl11C 8/16
365/189.011
2010/0241834 Al* 9/2010 Moudgill GOG6F 9/30163
712/225
OTHER PUBLICATIONS

PCT/US2013/045505 Notification Concerning Transmittal of Inter-
national Preliminary Report on Patentability, mailed Apr. 9, 2015, 7
pages.

PCT/US2013/045505 Written Opinion of the International Search-
ing Authority, mailed Jul. 29, 2013, S pages.

PCT/US2013/045505 International Search Report, mailed Jul. 29,
2013, 3 pages.

Office action with English translation from Japanese Patent Applica-
tion No. 2015-527454, mailed Jan. 5, 2016, 5 pages.

Office action with English translation from Korean Patent Applica-
tion No. 10-2015-7004969, mailed Nov. 30, 2015, 12 pages.

* cited by examiner

Primary Examiner — Eric Coleman

(74) Attorney, Agent, or Firm — Nicholson De Vos Webster
& Elliott LLP

(57) ABSTRACT

A processor executes a mask update instruction to perform
updates to a first mask register and a second mask register. A
register file within the processor includes the first mask reg-
ister and the second mask register. The processor includes

5,142,631 A * 8/1992 MUITAY ..ooovvss G067F lggi‘; execution circuitry to execute the mask update instruction. In
5511210 A * 4/1996 Nishikawa GOGF 17/16 response to the mask update instruction, the execution cir-
o 7122 cuitry is to invert a given number of mask bits in the first mask

5,526,296 A * 6/1996 Nakahara GO6F 7/764 register, and also to invert the given number of mask bits in the

708/209 second mask register.
5,781,789 A * 7/1998 Narayan GOGF 7/764

712/206 24 Claims, 15 Drawing Sheets

INSTRUCTION PROCESSING

APPARATUS 115

REGISTER FILE 17!

INSTRUCTIONS
CACHE sl DECODER

110 3 130

Y

EXECUTION UNIT

DATAINPUT/
QUTPUT

VECTOR REGISTERS

e B

140

DATA INPUT/
QUTPUT

MASK REGISTERS 185

[y

MEMORY

120 <

US 9,400,650 B2

Sheet 1 of 15

Jul. 26, 2016

U.S. Patent

} 'Ol
> (143
A AHOWIW
A
\
T 1Nd1no
ST Sy3Ls!
SIOFISYA /LNdNI VLY@
(28 0er v orr
SIT LINNNOILND3X3 [&—] ¥3q0o03a [« JHOYO
S¥31SI9TY HOL0TA 10d1N0 SNOILONYISNI
JLNdNI V1Y@
077 314 ¥318193y _ *
SIT SNLYYYddY
ONISSIO0Yd NOILONYLSNI

US 9,400,650 B2

Sheet 2 of 15

Jul. 26, 2016

U.S. Patent

Lwwiz
08¢ (SL19 Z8) ¥SOXW
072 (SL18 ¥9) did S
092 (SL18 79) SOVT4Y Isig ez
Shuwwx SLuwiA
(FASIEISREN]
380d¥Nd-TYHANTO 91
06Z 3114 ¥3L1SI93Y VY.1va aIMovd XN Ouuiux OLIWA Swiwiz
S11g ¥9 1]
' J '
Z I sugzLs
a3asvIv, 012 SHALSIOIY HOLO3A
|
_ B
0 !
) sifgos ’ 0
0% (dd 28X) - sLad ’
714 HILSIOIH MOVLS LNIOd ONILYO g —
HEVIVOS Z 914 02Z SaLSIOR HSY

002 J¥NLOLIHONUV ¥LSIOFY

U.S. Patent

Jul. 26, 2016

Sheet 3 of 15

7 6 5 4 3 2 1 0
Bo Ay Bo Bo Bo Ao Bo Ao
1 1 1 1 1 1 1 1
18T ITERATION (310)
By A By B1 B4 As By Ay
1 0 1 1 1 0 1 0
(CD Co * Co * Co ¥ *
1 1 0 1 0 1 0 0
MERGE (320):
OVERFLOW
B4 Co B B By Co B+ Co
1 1 1 1 1 1 1 1
CO * * * * * * *
1 0 0 0 0 0 0 0
2N0 ITERATION (330)
B> Cs B2 B2 B2 Cs B2 C
0 1 0 0 0 1 0 1
CO * * * * * * *
1 0 0 0 0 0 0 0
MERGE (340):
UNDERFLOW
* Cs * * * (o Co C
0 1 0 0 0 1 1 1
0 0 0 0 0 0 0 0

US 9,400,650 B2

DATA ELEMENT POSITION

INITIAL INPUT IN V1
K1 = CONDITION (V1)

V1= COMPUTATION (V1)
K1 = CONDITION (V1)

ELEMENTS INV2 TO
MOVE INTO V1

K2 = CONDITION (v2)

V1 AFTER MERGE
K1 AFTER MERGE

V2 AFTER MERGE
K2 AFTER MERGE

V1 = COMPUTATION (V1)
K1 = CONDITION (V1)

ELEMENT IN V2 TO MOVE
INTO V1
K2

V1 AFTER MERGE
K1 AFTER MERGE

V2 AFTER MERGE
K2 AFTER MERGE

U.S. Patent

Jul. 26, 2016 Sheet 4 of 15
401
rwmaskupdate(K1,K2) /
for (i=0,k=0;i<KL;i++)
if (KN
for (; k < KL; k++){
if (K2[KI{
K2lk] = 0;
K1[i] = 1;
kt++:
break;
}
}
}
}
402

sparsemov(K1,V1,K2,V2)

for (i=0,k=0;i<KL; i++){ /

if (AN
for(; k < KL; k++)
if (K2[K]K
VAT = V2[K];
k++:
break;
}
}
}

US 9,400,650 B2

|

| V2 = vector_load(X[i+KL-1:i]);
| K2 = condition(V2);
I
|

/Nload new KL elements of X array

Ilgenerate read mask for new elements

U.S. Patent Jul. 26, 2016 Sheet 5 of 15 US 9,400,650 B2
400
=0 [nitaizeloopoounter ;1""‘:
: v_index = -1:-2:...-KL+1:-KL {finitial vector of indexes A :
: v_KL = KL:KL:....KL:KL /fincrement for vector of indexes :
1 K1=0; {faccumulator is initially empty |
K=o, fmooverowsyet |
:“66{ "" !
if (K2 == 0){ I/if no elements left from previous overflow 420

i += KL; /fincrement loop counter
o vindex+=v KL [fincrement indexvector_ _ _ __ ___________)
ey T flelse continue with read mask K2~~~ ~ |)
431‘1\ sparsemov(K1, V1, K2, V2); /ladd new elements to V1... 40
432-1~ sparsemov(K1, V3, K2, v_index); {fand their indexes to V3 :
433—'\ rwmaskupdate(K1,K2); /lupdate read and write masks :
IsFuIIMask(K1){ Iffor full accumulator only 440

I
o dof

! V1 = computation(V1);

| K1 = condition(V1);

} twhile(K1 == OxFFFF)

: scatter(knot(K1),V1,V3,X);
!

1

1

1

|

{/dense computation over accumulated data

/fcheck condition after computation

/fcheck if accumulator is still full (all 1s in K1)
llscatter elements from V1 with indexes V3 to X array

/{continue when there is more input stream or

/Inew data in V2

| V1{K1} = computation({V1);
1 K1 = condition(V1);

| Jwhile(K1 1= 0)

| scatter(K3,V1,V3,X);

|

//store remainder mask for final scatter

//lcomputation under mask K1
/lcheck condition after computation
{lcheck if anything left to do

llscatter remaining elements from V1...

/Iwith indexes V3 to X array

FIG. 4B

U.S. Patent Jul. 26, 2016 Sheet 6 of 15 US 9,400,650 B2

500
(BEGIN ITERATIONS > /—"

LOAD INPUT DATA ELEMENTS
INTO V2
532

USEFUL DATA ELEMENTS
IN'V2?
531

MOVE AT LEAST A PORTION OF
USEFUL DATA ELEMENTS FROM V2
INTO V1
533

v

UPDATE K1 AND K2 TO IDENTIFY
POSITIONS OF THE USEFUL DATA
ELEMENTS IN V1 AND V2,
RESPECTIVELY
534

HAVE ALL
INPUT DATA ELEMENTS O
BEEN LOADED INTO V17
538

PERFORM VECTOR COMPUTATION
OVER THE USEFUL DATA ELEMENTS
IN'V1
536 PERFORM REMAINING VECTOR
COMPUTATION OVER THE USEFUL
A 4 DATA ELEMENTS IN V1 AND STORE
STORE RESULTS OF THE VECTOR RESULTS
COMPUTE OPERATION INTO MEMORY 539
537

X

(END ITERATIONS)

FIG. 5A

U.S. Patent Jul. 26, 2016 Sheet 7 of 15 US 9,400,650 B2

o
—
[

A FIRST MASK REGISTER AND A SECOND MASK REGISTER
511

v

DECODE THE MASK UPDATE INSTRUCTION
512

Y

SET A GIVEN NUMBER OF MASK BITS IN THE FIRST MASK REGISTER
FROM A FIRST BIT VALUE TO A SECOND BIT VALUE
513

v

SET THE GIVEN NUMBER OF MASK BITS IN THE SECOND MASK
REGISTER FROM THE SECOND BIT VALUE TO THE FIRST BIT VALUE FIG. 5B
514

RECEIVE BY A PROCESSOR A MASK UPDATE INSTRUCTION SPECIFYING /

RECEIVE BY A PROCESSOR A VECTOR MOVE INSTRUCTION SPECIFYING
A FIRST MASK REGISTER, A SECOND MASK REGISTER, A FIRST VECTOR /
REGISTER, AND A SECOND VECTOR REGISTER

521

A 4

DECODE THE VECTOR MOVE INSTRUCTION
522

A 4

IN RESPONSE TO THE DECODED VECTOR MOVE INSTRUCTION AND
BASED ON MASK BIT VALUES IN THE FIRST AND SECOND MASK
REGISTERS, REPLACE A GIVEN NUMBER OF TARGET DATA ELEMENTS
IN THE FIRST VECTOR REGISTER WITH THE GIVEN NUMBER OF SOURCE
DATA ELEMENTS IN THE SECOND VECTOR REGISTER FIG. 5C

523 .

US 9,400,650 B2

Sheet 8 of 15

Jul. 26, 2016

U.S. Patent

9 "Old

€09 IOVNONVT13ATTHOIH

809 H3TIdNOD
13S NOILONYLSNI
ANLYNEILY

09 Y3 dNOD 98X

909 3003 AUVYNIE 98X

¢19 HLH3IANOD
NOILONYLSNI

01930030 AYVYNIF
13S NOILONYLSNI

THVMLAOS JAILYNYALTY
IUYMAUVH /A &
\
o 719 3409 13S NOILONYLSNI
340D 13S NOILONYLSNI
98X INO LSV 98X NY LNOHLIM ¥OSS300¥d
L1V HLIM H0SS300¥d

US 9,400,650 B2

Sheet 9 of 15

Jul. 26, 2016

U.S. Patent

A

941 vil
LINN LINN FHOVO V1ivd
dHOVD ¢l

044 LINA
AHOWSIN

¢l LINO m_wb viva

4,914

V. 9l

[——

_ el

7 09/ (S)Y3LSNID NOILND3XT

9. (SILINN 79/
$S300V (S)LINN
AOWIN NOILNI3X3

A -
] P

"

86/ (S)LINN S314 HALSIOTY TWIISAHd

A& 1

||||| B S Wit
ﬂ 2S. LINN J w

« — HOLYOOTIV/INYNTY _

LINA INFWIHILTS

I
I
I
L _
I

—— —

0SZ LINN
INION NOLLNJ3X3

OvZ 1INN 30003d

Y
_ 8¢/ HOL13d ﬂo:b:m._.mz_ |

0¢L
LINM ONT INGHA

9€L LINN g7L NOILONYLSNI
—P1_¥EL LINN FHOVO NOLLONYLSNI

NOILJId3¥d HONVME

¢EL LINN

Bl 47
ALIHM 9kL

AV AJONIN 472 oz |

80

™

061 3400

904

v0L

| L onranvH
| LIANOO |61 ox3

| R

AHOWIN

MOvE SLIHM

JOVLS 31N03X3

1avad
H31S5193H

IINAIHOS [ONINYNTA 00TV

30023d

ONIC0O4d
HIONT1

A
H3134

US 9,400,650 B2

Sheet 10 of 15

Jul. 26, 2016

U.S. Patent

g8 "old

vo08
JHOVO v1va L1

V8 9Ol

208
AHHJOMILIN ONIY
 \
/

¥08
JHOVO
¢13H1 40 138dNS OO

A

¥

908
3HOVO i1

J
¥

[
A

yi8 cL8
SY31SI93Y SYILSIOIY
HO.LO3N HYIVOS

| J

v v | ¥

SIAAS A f44]
1HIANOD 1H¥3IANOD
OId3INNN OIH3INNN

A
v18
SH3LSIO3Y
dOL03N
)
vy /

028 ye8
JFIZZIMS 31vOIid3y
Y.V 3

8¢8

NIV J0L03A 3AIM-91L

|

0l8 808
1INN 1IN
HOL103A HYIVOS

98
SYILSIOTY MSVIA A LIHM

J \ |
y

008
3d003d NOILONYLSNI

US 9,400,650 B2

Sheet 11 of 15

Jul. 26, 2016

U.S. Patent

6 Old

| oveelNn [T T T T ZI6BNE — T T T T 3 _

MITIOHINOD T~ — - = ————————-—
b oWan _ 906 (SILINN FHOVO CvHS | _
w8 EUN 1 o] ety Bl _
¥ITIOWINOD | = T822 o wos 1 W06 _
snd | (S)LINN “ | e e (S)LINN 806 219071 |
016 LINN | 3HOVO | FHOVO | | 3sodund |
INIOV W3LSAS | NZ06IMOD | V2063400 | Tviodds |

006 HOSSIV0Hd

US 9,400,650 B2

Sheet 12 of 15

Jul. 26, 2016

U.S. Patent

0l 'Ol
_nl — 1
_
_ 0501 HO!I m on
rH\l_ﬁ o ~— 0901
S e
wonan | — 1 %% Io_\,_mul |_ H0SSI00Yd
~0z07 anH _ -09
HITIONLINOD . I_
R \I\ o, — |
mmo - _
L __ __| wossaooud |—'—4 I
_i

0001

US 9,400,650 B2

Sheet 13 of 15

Jul. 26, 2016

U.S. Patent

AIE!
V1va
8¢l —1— 0¢11
ANV 3009 | s3omaa | 3snow
JOVHOLS VLIVa Lt WINOD 243 /AYVOLATN
0zL) 1
Gl AN v 8111
HOSSID0Md o/l olany SI0IAIA Ol 39049 SN
o~/ — — — |
9L —1 | zeLL —1 N | een
8611 — dd 061} 13SdIHO JES L gy _mOmmuooEoo_
7611 — _—
i %)
—
owr | d-d dd d-d d-d 0L
%:L%:L \ \ P@E
811
0511
=N =z
NI NI
peL) z81)
AHOWIN AHOWAW
¥OSSIO0MdOD
OSSIO0Nd ¥0SSI00Nd
004}

US 9,400,650 B2

Sheet 14 of 15

¢l Ol

11743
O/l AOVOT1

961, —1
13SdIHD

—>

Jul. 26, 2016

vELL
AJOWIN

U.S. Patent

d0SS330dd

0G1l

H0SS3004d

ANI /|MWE Lo

cell
AHOWIW

fr— —— —

_ S30IA3A O/1

— — —

N

00ct

US 9,400,650 B2

Sheet 15 of 15

Jul. 26, 2016

U.S. Patent

1 E |
16 (S)LINN
0vEl 0sel YITIONLNOD
LINN AVdsia | | SEEF INRYAA) e vais AMOWIN
Q3LVHOIINI
916 (S)LINN
YATIOHINOD
sng] 2051 (SITINN %mzzoomEz_ -
“ |
_
| 906 (S)LINN FHOVD QI™VHS
Fe—==1
|| Nvos | | V06
| 1 SUND | | e@e | |(S)LINN
016 LINN 207) 3HIVI
INIOY WALSAS _ NZ06 TH0D ._ V206 3900
0L€} HOSSID0YUd NOILYOITddY

0zl (S)40SS300Hd0D

00¢l
diHO V NO W31SAS

US 9,400,650 B2

1
READ AND WRITE MASKS UPDATE
INSTRUCTION FOR VECTORIZATION OF
RECURSIVE COMPUTATIONS OVER
INTERDEPENDENT DATA

TECHNICAL FIELD

The present disclosure pertains to the field of processing
logic, microprocessors, and associated instruction set archi-
tecture that, when executed by the processor or other process-
ing logic, perform logical, mathematical, or other functional
operations.

BACKGROUND ART

An instruction set, or instruction set architecture (ISA), is
the part of the computer architecture related to programming,
and may include the native data types, instructions, register
architecture, addressing modes, memory architecture, inter-
rupt and exception handling, and external input and output
(I/O). The term instruction generally refers herein to macro-
instructions—that is instructions that are provided to the pro-
cessor (or instruction converter that translates (e.g., using
static binary translation, dynamic binary translation includ-
ing dynamic compilation), morphs, emulates, or otherwise
converts an instruction to one or more other instructions to be
processed by the processor) for execution—as opposed to
micro-instructions or micro-operations (micro-ops)—that is
the result of a processor’s decoder decoding macroinstruc-
tions.

The ISA is distinguished from the micro-architecture,
which is the internal design of the processor implementing
the instruction set. Processors with different micro-architec-
tures can share acommon instruction set. For example, Intel®
Core™ processors and processors from Advanced Micro
Devices, Inc. of Sunnyvale Calif. implement nearly identical
versions of the x86 instruction set (with some extensions that
have been added with newer versions), but have different
internal designs. For example, the same register architecture
of'the ISA may be implemented in different ways in different
micro-architectures using well-known techniques, including
dedicated physical registers, one or more dynamically allo-
cated physical registers using a register renaming mecha-
nism, etc.

Many modern ISAs support Single Instruction, Multiple
Data (SIMD) operations. Instead of a scalar instruction oper-
ating on only one or two data elements, a vector instruction
(also referred to as packed data instruction or SIMD instruc-
tion) may operate on multiple data elements or multiple pairs
of data elements simultaneously or in parallel. The processor
may have parallel execution hardware responsive to the vec-
tor instruction to perform the multiple operations simulta-
neously or in parallel. A SIMD operation operates on multiple
data elements packed within one vector register or memory
location in one operation. These data elements are referred to
as packed data or vector data. Each of the vector elements
may represent a separate individual piece of data (e.g., a color
of a pixel, etc.) that may be operated upon separately or
independently of the others.

In some scenarios, a SIMD operation may operate on inde-
pendent vector data elements in a recursive manner, where the
number of iterations is different for different data elements.
Thus, computation for some data elements may be finished
while some other data elements still need more iterations.
One example of the recursive computation is a WHILE loop
operation. In this example, a data array X[i] (i=0, ..., N-1)
of' N elements is subject to a recursive computation while the

10

15

20

25

30

35

40

45

50

55

60

65

2

condition(X[i]) is true (satisfied). The computation for X[i]
terminates when condition (X[i]) becomes false. An example
of the condition may be X[i]>0.

for (i=0; i<N; i++){

while (condition(X[i])){

X[i]=computation(X [i]);} }

The above computation cannot be easily vectorized if the
number of the WHILE loop iterations is different for different
data elements of X[i]. One possible approach is for a proces-
sor to perform computation over those elements that do not
satisfy the condition, and then throw away the results derived
from those elements. However, this approach has low effi-
ciency because the processor not only performs unnecessary
computation over those elements, but also is unable to utilize
the vector register slots occupied by those elements.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments are illustrated by way of example and not
limitation in the Figures of the accompanying drawings:

FIG. 1 is a block diagram of an instruction processing
apparatus including vector registers and mask registers
according to one embodiment.

FIG. 2 is a block diagram ofregister architecture according
to one embodiment.

FIG. 3 illustrates an example of a vector operation
sequence according to one embodiment.

FIG. 4A illustrates an example of pseudo-code for instruc-
tions that cause a processor to perform operations on vector
registers and mask registers according to one embodiment.

FIG. 4B illustrates an example of a code segment for using
the instructions of FIG. 4A according to one embodiment.

FIG. 5A is a flow diagram illustrating operations to be
performed responsive to a code segment that uses the mask
update instruction and the vector move instruction according
to one embodiment.

FIG. 5B is a flow diagram illustrating operations to be
performed responsive to a mask update instruction according
to one embodiment.

FIG. 5C is a flow diagram illustrating operations to be
performed responsive to a vector move instruction according
to one embodiment.

FIG. 6 is a block diagram illustrating the use of a software
instruction converter to convert binary instructions in a source
instruction set to binary instructions in a target instruction set
according to one embodiment.

FIG. 7A is a block diagram of an in-order and out-of-order
pipeline according to one embodiment.

FIG. 7B is a block diagram of an in-order and out-of-order
core according to one embodiment.

FIGS. 8A-B are block diagrams of a more specific exem-
plary in-order core architecture according to one embodi-
ment.

FIG. 9 is a block diagram of a processor according to one
embodiment.

FIG. 10 is a block diagram of a system in accordance with
one embodiment.

FIG. 11 is a block diagram of a second system in accor-
dance with one embodiment.

FIG. 12 is a block diagram of a third system in accordance
with an embodiment of the invention.

FIG. 13 is a block diagram of a system-on-a-chip (SoC) in
accordance with one embodiment.

DESCRIPTION OF THE EMBODIMENTS

In the following description, numerous specific details are
set forth. However, it is understood that embodiments of the

US 9,400,650 B2

3

invention may be practiced without these specific details. In
other instances, well-known circuits, structures and tech-
niques have not been shown in detail in order not to obscure
the understanding of this description.

Embodiments described herein provide instructions for
improving the efficiency of recursive vector computation
over independent data elements. The instructions utilize a
pair of vector registers and a pair of mask registers to perform
recursive vector computation, where a first vector register
serves as an accumulator to accumulate vector computation
results, and a second vector register provides new data ele-
ments to fill in the unutilized slots (unused or finished data
element positions) of the first vector register. The mask reg-
isters are used to indicate which data elements in the corre-
sponding vector registers need further computation.

In one embodiment, the first vector register (i.e., the accu-
mulator) accumulates input data elements until the register is
filled up with a full vector. The processor then performs
computation on these data elements using non-masked (i.e.,
dense) vector operations. After the computation, some ele-
ments (for which the computation is finished) in the accumu-
lator can be sent back to memory or other storage locations,
and other elements (for which the computation has not fin-
ished) can be kept in the accumulator for an additional num-
ber of iterations. The data element positions of the finished
computation in the accumulator can be utilized by new data
elements that also need the same recursive computation.

Two instructions RWMASKUPDATE and SPARSEMOV
are described herein. These instructions improve the effi-
ciency of vectorization in many scenarios. For example, in
one scenario the input data elements may come from one or
more sparse vector data sets, each of which does not have
enough elements to fill the entire accumulator (i.e., the first
vector register). Moreover, input data elements from different
data sets may need different numbers of iterations in compu-
tation. Thus, unutilized slots are left in the accumulator from
those data elements that need no more computation. The
instructions described herein allow these unutilized slots to be
filled by useful elements, thus enabling recursive computa-
tion over a full vector. As will be described in further detail
below, the SPARSEMOV instruction is a vector move instruc-
tion that moves useful data elements (i.e., data elements that
need computation) from a second vector register into the
accumulator. The RWMASKUPDATE instruction updates
both a read mask register (associated with the second vector
register) and a write mask register (associated with the accu-
mulator) to identify the positions of useful data elements in
these two vector registers.

The use of RWMASKUPDATE in combination with
SPARSEMOV reduces the total number of instructions
needed in a recursive computation, and simplifies the over-
flow and underflow cases where the number of useful data
elements (i.e., source data elements) in the second vector
register does not match the number of unutilized slots (i.e.,
target positions) in the first vector register. The updated read
and write masks are used to control the data movement
between the two vector registers; in particular, write mask bits
of zeros are used to identify the target positions in the accu-
mulator, and read mask bits of ones are used to identify the
source data elements in the second vector register. The use of
inverted write mask bits for identifying the target positions
simplifies data accumulation in vectorization of sparse and
recursive computation.

FIG. 1 is ablock diagram of an embodiment of an instruc-
tion processing apparatus 115 having an execution unit 140
that includes circuitry operable to execute instructions,
including the RWMASKUPDATE and SPARSEMOV

15

20

30

35

40

45

4

instructions. In some embodiments, the instruction process-
ing apparatus 115 may be a processor, a processor core of a
multi-core processor, or a processing element in an electronic
system.

A decoder 130 receives incoming instructions in the form
of higher-level machine instructions or macroinstructions,
and decodes them to generate lower-level micro-operations,
micro-code entry points, microinstructions, or other lower-
level instructions or control signals, which reflect and/or are
derived from the original higher-level instruction. The lower-
level instructions or control signals may implement the opera-
tion of the higher-level instruction through lower-level (e.g.,
circuit-level or hardware-level) operations. The decoder 130
may be implemented using various different mechanisms.
Examples of suitable mechanisms include, but are not limited
to, microcode, look-up tables, hardware implementations,
programmable logic arrays (PLAs), other mechanisms used
to implement decoders known in the art, etc.

The decoder 130 may receive incoming instructions for a
cache 110, a memory 120 or other sources. The decoded
instructions are sent to the execution unit 140. The execution
unit 140 may receive from the decoder 130 one or more
micro-operations, micro-code entry points, microinstruc-
tions, other instructions, or other control signals, which
reflect, or are derived from the received instructions. The
execution unit 140 receives data input from and generates
data output to a register file 170, the cache 110, and/or the
memory 120.

In one embodiment, the register file 170 includes architec-
tural registers, which are also referred to as registers. Unless
otherwise specified or clearly apparent, the phrases architec-
tural registers, register file, and registers are used herein to
refer to registers that are visible to the software and/or pro-
grammer (e.g., software-visible) and/or the registers that are
specified by macroinstructions to identify operands. These
registers are contrasted to other non-architectural registers in
a given microarchitecture (e.g., temporary registers, reorder
buffers, retirement registers, etc.).

To avoid obscuring the description, a relatively simple
instruction processing apparatus 115 has been shown and
described. It is to be appreciated that other embodiments may
have more than one execution unit. For example, the appara-
tus 115 may include multiple different types of execution
units, such as, for example, arithmetic units, arithmetic logic
units (ALUs), integer units, floating point units, etc. Still
other embodiments of instruction processing apparatus or
processors may have multiple cores, logical processors, or
execution engines. A number of embodiments of the instruc-
tion processing apparatus 115 will be provided later with
respect to FIGS. 7-13.

According to one embodiment, the register file 170
includes a set of vector registers 175 and a set of mask regis-
ters 185, both of which store the operands of the RWMASK-
UPDATE and SPARSEMOV instructions. Each vector regis-
ter 175 can be 512 bits, 256 bits, or 128 bits wide, or a
different vector width may be used. Each mask register 185
contains a number of mask bits, with each mask bit corre-
sponding to one data element of one of the vector registers
175. As each mask bit is used to mask a data element of a
vector register, a mask register of 64 bits can be used to mask
sixty-four 8-bit data elements of a 512-bit register. For a
vector register with a different width (e.g., 256 bits or 128
bits) and data elements of a different size (e.g., 16 bits, 32 bits
or 64 bits), a different number of mask bits may be used in
connection with a vector operation.

FIG. 2 illustrates an embodiment of underlying register
architecture 200 that supports the instructions described

US 9,400,650 B2

5

herein. The register architecture 200 is based on the Intel®
Core™ processors implementing an instruction set including
x86, MMX™_ Streaming SIMD Extensions (SSE), SSE2,
SSE3, SSE4.1, and SSE4.2 instructions, as well as an addi-
tional set of SIMD extensions, referred to the Advanced Vec-
tor Extensions (AVX) (AVX1 and AVX2). However, it is
understood different register architecture that supports differ-
ent register lengths, different register types and/or different
numbers of registers can also be used.

In the embodiment illustrated, there are thirty-two vector
registers 210 that are 512 bits wide; these registers are refer-
enced as zmm0 through zmm31. The lower order 256 bits of
the lower sixteen zmm registers are overlaid on registers
ymm0-16. The lower order 128 bits of the lower sixteen zmm
registers (the lower order 128 bits of the ymm registers) are
overlaid on registers xmm0-15. In the embodiment illus-
trated, there are eight mask registers 220 (k0 through k7),
each 64 bits in length. In an alternate embodiment, the mask
registers 220 are 16 bits width.

In the embodiment illustrated, the register architecture 200
further includes sixteen 64-bit general-purpose (GP) registers
230. In an embodiment they are used along with the existing
x86 addressing modes to address memory operands. The
embodiment also illustrates RFLLAGS registers 260, RIP reg-
isters 270 and MXCSR registers 280.

The embodiment also illustrates a scalar floating point (FP)
stack register file (x87 stack) 240, on which is aliased the
MMX packed integer flat register file 250. in the embodiment
illustrated, the x87 stack is an eight-element stack used to
perform scalar floating-point operations on 32/64/80-bit
floating point data using the x87 instruction set extension;
while the MMX registers are used to perform operations on
64-bit packed integer data, as well as to hold operands for
some operations performed between the MMX and xmm
registers.

Alternative embodiments of the invention may use wider or
narrower registers. Additionally, alternative embodiments of
the invention may use more, less, or different register files and
registers.

FIG. 3 is a diagram illustrating an example of the opera-
tions performed by a processor (e.g., the instruction process-
ing apparatus 115) to efficiently vectorize the computation
over independent data elements. To simplify the illustration,
each vector register in this example is shown to have only
eight data elements. Alternative embodiments may have a
different number of data elements in the vector registers. The
vector registers can be 128 bits, 256 bits, or 512 bits wide
(e.g., the xmm, ymm or zmm registers of FIG. 2), or a differ-
ent width may be used. As there are eight data elements in
each vector register, only eight mask bits are used in connec-
tion with each vector register.

In this example, the vector register V1 is used as an accu-
mulator, and vector register V2 is used to provide new data
elements to V1. Mask registers K1 (the write mask) and K2
(the read mask) are used to mask the data elements in V1 and
V2, respectively. In this example, a mask bit of zero indicates
that the corresponding data element is masked from compu-
tation (i.e., no further computation is necessary), and a mask
bit of one indicates that the corresponding data element needs
further computation. In an alternative embodiment, the mean-
ing of the mask bit value may be reversed; e.g., a mask bit of
one may be used to indicate that the corresponding data
element needs no further computation, and a mask bit of zero
may be used to indicate that the corresponding data element
needs further computation.

Initially, it is assumed that the accumulator V1 stores two
sets of data as the input vector: A and B, each of which may be

10

15

20

25

30

35

40

45

50

55

60

65

6

part of a sparse data array. The subscript j of A; and B; indi-
cates the number of iterations that a data element has gone
through; e.g., A, is the element of A before any iterations, and
A, is the element of A after a first iteration 310. To simplify
the illustration, different data elements from the same data set
in the same iteration are shown to have the same identifier;
e.g., A, in position 0 and A, in position 2 of the input vector
are two different elements and may have the same or different
values, and B, in position 1 and B, in position 3 of the input
vector are two different elements and may have the same or
different values. The initial values of the mask bits in the mask
register K1 are all ones, indicating that the initial input vector
in V1 is a full vector and that every element of V1 can
participate in the first iteration 310 of the vector computation.

In this example, each iteration represents an iteration of a
WHILE loop in which a recursive vector computation is
performed. After the first iteration 310, the accumulator V1
includes a set of A,;’s and B, ’s, where the subscript indicates
that these elements have finished the first iteration. Assume
that elements of A only need one iteration of the WHILE loop
and elements of B need two iterations. Thus, after one itera-
tion of the WHILE loop, the computation for the A elements
has finished while one more iteration is needed for the B
elements. At this point, the condition for each of the A ele-
ments is false (because they do not satisfy the condition for
further computation), and the condition for each of the B
elements is true (because they satisty the condition for further
computation). Thus, the mask bit values in K1 are set to zeros
for those mask bits corresponding to A ’s, and ones for those
mask bits corresponding to B, ’s.

In one embodiment, a mask bit of zero indicates that the
result in the corresponding element position will be thrown
away after a vector operation over the entire vector register (in
this case, V1). In alternative embodiments, a mask bit of zero
indicates that the computation for the corresponding element
position will not be performed and therefore that element
position is unutilized. In either scenario, keeping A, ’s in the
accumulator V1 is a waste of vector resources and reduces the
efficiency of the vector computation. Therefore, according to
one embodiment of the invention, a second vector register V2
is used to provide new data elements to V1 to fill the unuti-
lized slots (i.e., the data element positions) left by A,’s. The
data elements of A,’s can be saved into memory, cache or
other data storage.

In the example of FIG. 3, the vector register V2 stores
elements of a data set C, which may be part of another sparse
vector array. The positions in V2 marked with “*” represent
“don’t care,” which means that they do not contain useful data
elements for the purpose of the recursive vector computation.
Assume that each data element of C needs to go through three
iterations of the WHILE loop. Instead of or in addition to the
elements of C, V2 may provide new data elements of A and/or
B(e.g.,A,’s, By’s and/or B, ’s) that need to go through one or
more iterations of the WHILE loop (and therefore further
computation). These data elements in V2 that need further
computation are referred to as “source data elements.” These
source data elements in V2 can fill in the unutilized slots in V1
left by A,’s (referred to as “target data elements™). For ease of
description, data elements in V1 and/or V2 that need further
computation are referred to as “useful data elements.” Thus, a
merge operation 320 is performed to merge the useful data
elements in V1 and V2, such that the source data elements in
V2 are moved to the positions in V1 occupied by the target
data elements, and that the recursive computation can pro-
ceed to a second iteration 330 with additional useful data
elements in V1.

US 9,400,650 B2

7

Three scenarios may occur in such a merge operation:
overflow, underflow and exact match. An exact match indi-
cates that there is the same number of useful data elements in
V2 as the number of unutilized slots left in V1. Thus, in an
exact match, all of the source data elements in V2 move into
(i.e., replace) the unutilized slots left in V1. As aresult, V1 has
a full vector to start the next iteration, and K1 is updated to
contain all ones. There is no more source data element left in
V2, and K2 is updated to contain all zeros.

The merge operation 320 illustrates an overtlow scenario in
which the number of new data elements (C,) is greater than
the number of the zero-value mask bits in K1 (i.e., the number
of' A)). Thus, not all of the new data elements in V2 can move
into V1. In this example, the encircled C, in position 7 0of V2
is left in V2, while the other C,’s in positions 2, 4 and 6 have
moved into V1. In this embodiment, the lower-order elements
of V2 are moved into V1, in alternative embodiments, the
higher-order elements of V2 may be moved into V1. The
merge operation 320 also updates the corresponding mask
bits in K1 and K2.

After the merge operation 320, V1 contains a full vector of
eight elements to start the second iteration 330, and V2 only
has one C, left in position 7. The corresponding mask register
K1 at this point (after the merge operation 320) contains all
ones, and K2 contains only one mask bit having a value of one
in position 7.

After the second iteration 330, the accumulator V1 con-
tains a combination of B,’s and C, ’s. As the computation for
the B elements has finished after this iteration, those B,’s can
be saved into memory, cache or other data storage. Thus, the
condition for each of B elements is false (because they do not
satisfy the condition for further computation), and the condi-
tion for each of the C elements is true (because they satisfy the
condition for further computation). Thus, the mask bit values
in K1 are set to zeros for those mask bits corresponding to
B,’s, and ones for those mask bits corresponding to C,’s.

The unutilized slots left by B,’s can be filled by the remain-
ing source data elements in V2; in this case, C, in position 7
of'V2. However, as there is a smaller number of C,’s than the
number of B,’s, an underflow occurs in a subsequent merge
operation 340. In the underflow scenario shown in FIG. 3, the
lowest-order B, in V1 is replaced by C,; in alternative
embodiments, the highest-order B, in V1 may be replaced by
C,. The merge operation 340 also updates the corresponding
mask bits in K1 and K2.

After the merge operation 340, the accumulator V1 is not
completely filled, and V2 does not have any more useful data
elements that can move into V1. The mask register K1 at this
point (after the merge operation 340) contains ones in the
positions corresponding to the C elements, and K2 contains
all zeros. V2 may load additional useful data elements to be
moved into V1 and the merge operations of 320 and/or 340
can be repeated, until all of the useful data elements are
processed and no more source data elements are leftin V2. At
this point, V1 may go through a number of additional itera-
tions until all of the elements in V1 reach the required number
of iterations.

It is understood that the meaning of mask bit values of
zeros and ones can be reversed from what is shown in the
example of FIG. 3; e.g., a mask bit value of zero can be used
to mean that a condition is satisfied and a mask bit value of
one can be used to mean that the condition is not satisfied. In
some embodiments, the meaning of K1 mask bit values can be
reversed from the meaning of K2 mask bit values; e.g., a K1
mask bit value of one can be used to mean that a condition is
not satisfied and a K2 mask bit value of one can be used to
mean that the condition is satisfied. Thus, different mask bit

10

15

20

25

30

35

40

45

50

55

60

65

8

values can be used in the example of FIG. 3 for the same
scenario, as long as the meaning of each mask bit in each
mask register is consistently defined to allow consistent inter-
pretation.

According to one embodiment of the invention, the opera-
tions described in connection with FIG. 3 are performed by a
processor (e.g., the instruction processing apparatus 115) in
response to the vector instructions that include RWMASK-
UPDATE and SPARSEMOV instructions. The SPARSE-
MOV instruction can be used to move source data elements
from vector register V2 into vector register V1, replacing the
target elements in V1 that do not satisfy a condition (e.g.,
elements that need no more computation). The RWMASK-
UPDATE instruction can be used to update the mask registers
K1 and K2 to thereby identify the positions of the data ele-
ments in V1 and V2, respectively, that satisfy a condition
(e.g., elements that need more computation). In one embodi-
ment, RWMASKUPDATE has two operands K1 and K2, and
SPARSEMOV has four operands K1, V1, K2 and V2. In
alternative embodiments, some of the operands of
RWMASKUPDATE and/or SPARSEMOV may be implicit.

FIG. 4A shows an example of pseudo-code 401 and 402 for
the RWMASKUPDATE and SPARSEMOV instructions
according to one embodiment. In the pseudo-code 401 and
402, KL represents the vector length, which is the total num-
ber of data elements in each vector register (e.g., each of V1
and V2). If a zmm register is used as the accumulator with
8-bit data elements, KIL.=512/8=64. Pseudo-code 401
describes the RWMASKUPDATE instruction, and pseudo-
code 402 describes the SPARSEMOV instruction. It is noted
that a processor may implement the RWMASKUPDATE and
SPARSEMOV instructions with operations or logic different
from what is shown in the pseudo-code 401 and 402.

The RWMASKUPDATE and SPARSEMOV instructions
update mask registers and move data elements between vec-
tor registers, respectively. Additional instructions can be
executed to utilize results of these instructions to thereby
perform recursive vector computation more efficiently. FIG.
4B illustrates an example of a code segment 400 that uses
RWMASKUPDATE and SPARSEMOV instructions accord-
ing to one embodiment. The code segment 400 when
executed by a processor causes the processor to perform
recursive vector computation over independent data elements
of'an array X. The array X may be stored in the memory, cache
or other data storage locations. The code segment 400
includes an initialization section 410, an initial merge section
420, a subsequent merge section 430, a computation section
440 and a remainder section 450. Operations in each of the
sections 410-450 are described below with reference to the
flow diagram of FIG. 5A, which illustrates an embodiment of
a method 500 performed by a processor (e.g., the instruction
processing apparatus 115 of FIG. 1).

Inthe initialization section 410, both mask registers K1 and
K2 are initialized to zero, indicating no useful data elements
are in their corresponding vector registers V1 and V2. The
term “useful data elements” means data elements that need
computation. Iterations begin at the initial merge section 420,
where K2 is first checked to determine whether any useful
data elements are left in V2 (block 531). If there is no useful
data in V2, input data elements are loaded from array X into
V2 (block 532), and their corresponding mask bits in K2 are
set accordingly.

The subsequent merge section 430 handles the scenario in
which V2 contains useful data elements. The useful data
elements may be left in V2 from a previous overflow or may
be loaded into V2 in block 532. Responsive to the SPARSE-
MOV instruction 431, these useful data elements in V2 are

US 9,400,650 B2

9

moved into V1 according to the mask bits in K1 and K2 (block
533). Responsive to the RWMASKUPDATE instruction 433,
the mask registers K1 and K2 are updated to identify the
current positions of the useful data elements in V1 and V2,
respectively, after the move in block 533 (block 534).

In the subsequent merge section 430, a second SPARSE-
MOV instruction 432 is executed to store the indexes (posi-
tions) of the data elements in array X that were moved from
V2 into V1, such that results of the computation can be stored
back to their original positions in array X.

The computation section 440 handles the vector computa-
tion of a full vector (as indicated by the corresponding mask
being all ones; i.e., when IsFullMask(K1) is true). If V1 does
not have a full vector of useful data elements (block 535) and
there are input data elements that have not been loaded into
V1 (block 538), it indicates that additional input data ele-
ments can to be loaded into V1 via V2 (blocks 532-534). If V1
does not have a full vector and there are no more input data
elements to be loaded into V1 (block 538), it indicates that the
operations proceed to the remainder section 450 where
remaining data elements in V1 are computed until computa-
tion is finished and results are saved back to array X (block
539).

If'V1 has a full vector of useful data elements (block 535),
vector computation can be performed on V1 (block 536). The
mask register K1 is updated if any data elements in V1 need
no more computation. The vector computation continues
until one or more data elements in V1 need no more compu-
tation (as indicated by corresponding zero-value mask bits in
K1); at that point those data elements are saved back to array
X (block 537). In the embodiment as shown, the data ele-
ments can be saved with a SCATTER instruction, and zero-
value mask bits in K1 can be identified using a function
knot(K1). Except for the RWMASKUPDATE and SPARSE-
MOV instructions, the specific instructions and functions
used in the code segment 400, such as SCATTER, knot,
IsFullMask, etc., can be emulated by alternative instruction
sequences.

The operations of blocks 531-537 are repeated until there
are no more input data elements to be loaded into V1 through
V2 (block 538); i.e., when all of the input data elements in
array X have been loaded into V2 and all of the useful data
elements in V2 have been moved into V1. This is when the
remainder section 450 begins. At this point, V1 may not have
a full vector of useful data elements but those data elements in
V1 need further computation. The vector computation con-
tinues until all of the remaining data elements in V1 reach the
required number of iterations (block 539). At this point, the
computation result in V1 can be saved back into array X (e.g.,
using a SCATTER instruction) (block 539).

FIG. 5B is a block flow diagram of a method 510 for
executing the RWMASKUPDATE instruction according to
one embodiment. The method 510 begins with a processor
(e.g., the instruction processing apparatus 115 of FIG. 1)
receiving a mask update instruction specifying a first mask
register and a second mask register (block 511). The proces-
sor decodes the mask update instruction (block 512). In
response to the decoded mask update instruction, the proces-
sor performs the operations including: inverting a given num-
ber of mask bits in the first mask register; for example, by
setting these mask bits from a first bit value (e.g., zero) to a
second bit value (e.g., one) (block 513); and inverting the
given number of mask bits in the second mask register; for
example, by setting these mask bits from the second bit value
(e.g., one) to the first bit value (e.g., zero) (block 514). The
given number is the smaller one of the number of mask bits in
the first mask register having the first bit value and the number

10

15

20

25

30

35

40

45

50

55

60

65

10

of'mask bits in the second mask register having the second bit
value. In an alternative embodiment, the first bit value may be
one and the second bit value may be zero.

FIG. 5C is a block flow diagram of a method 520 for
executing the SPARSEMOV instruction according to one
embodiment. The method 520 begins with a processor (e.g.,
the instruction processing apparatus 115 of FIG. 1) receiving
a vector move instruction specifying a first mask register, a
second mask register, a first vector register, and a second
vector register (block 521). The processor decodes the vector
move operation (block 522). In response to the decoded vec-
tor move instruction and based on the mask bit values in the
first and second mask registers, the processor replaces a given
number of target data elements in the first vector register with
the given number of source data elements in the second vector
register (block 523). In one embodiment, each source data
element corresponds to a mask bit in the second mask register
having a second bit value (e.g., one), and wherein each target
data element corresponds to a mask bit in the first mask
register having a first bit value (e.g., zero). In an alternative
embodiment, the first bit value may be one and the second bit
value may be zero. The given number is the smaller one of the
number of mask bits in the first mask register having the first
bit value and the number of mask bits in the second mask
register having the second bit value.

In various embodiments, the methods of FIGS. 5A-C may
be performed by a general-purpose processor, a special-pur-
pose processor (e.g., a graphics processor or a digital signal
processor), or another type of digital logic device or instruc-
tion processing apparatus. In some embodiments, the meth-
ods of FIGS. 5A-C may be performed by the instruction
processing apparatus 115 of FIG. 1, or a similar processor,
apparatus, or system, such as the embodiments shown in
FIGS. 7-13. Moreover, the instruction processing apparatus
115 of FIG. 1, as well as the processor, apparatus, or system
shown in FIGS. 7-13 may perform embodiments of opera-
tions and methods either the same as, similar to, or different
than those of the methods of FIGS. 5A-C.

In some embodiments, the instruction processing appara-
tus 115 of FIG. 1 may operate in conjunction with an instruc-
tion converter that converts an instruction from a source
instruction set to a target instruction set. For example, the
instruction converter may translate (e.g., using static binary
translation, dynamic binary translation including dynamic
compilation), morph, emulate, or otherwise convert an
instruction to one or more other instructions to be processed
by the core. The instruction converter may be implemented in
software, hardware, firmware, or a combination thereof. The
instruction converter may be on processor, off processor, or
part on and part off processor.

FIG. 6 is a block diagram contrasting the use of a software
instruction converter according to embodiments of the inven-
tion. In the illustrated embodiment, the instruction converter
is a software instruction converter, although alternatively the
instruction converter may be implemented in software, firm-
ware, hardware, or various combinations thereof. FIG. 6
shows a program in a high level language 602 may be com-
piled using an x86 compiler 604 to generate x86 binary code
606 that may be natively executed by a processor with at least
one x86 instruction set core 616. The processor with at least
one x86 instruction set core 616 represents any processor that
can perform substantially the same functions as an Intel pro-
cessor with at least one x86 instruction set core by compatibly
executing or otherwise processing (1) a substantial portion of
the instruction set of the Intel x86 instruction set core or (2)
object code versions of applications or other software tar-
geted to run on an Intel processor with at least one x86

US 9,400,650 B2

11

instruction set core, in order to achieve substantially the same
result as an Intel processor with at least one x86 instruction set
core. The x86 compiler 604 represents a compiler that is
operable to generate x86 binary code 606 (e.g., object code)
that can, with or without additional linkage processing, be
executed on the processor with at least one x86 instruction set
core 616. Similarly, FIG. 6 shows the program in the high
level language 602 may be compiled using an alternative
instruction set compiler 608 to generate alternative instruc-
tion set binary code 610 that may be natively executed by a
processor without at least one x86 instruction set core 614
(e.g., aprocessor with cores that execute the MIPS instruction
set of MIPS Technologies of Sunnyvale, Calif. and/or that
execute the ARM instruction set of ARM Holdings of Sunny-
vale, Calif.). The instruction converter 612 is used to convert
the x86 binary code 606 into code that may be natively
executed by the processor without an x86 instruction set core
614. This converted code is not likely to be the same as the
alternative instruction set binary code 610 because an instruc-
tion converter capable of this is difficult to make; however, the
converted code will accomplish the general operation and be
made up of instructions from the alternative instruction set.
Thus, the instruction converter 612 represents software, firm-
ware, hardware, or a combination thereof that, through emu-
lation, simulation or any other process, allows a processor or
other electronic device that does not have an x86 instruction
set processor or core to execute the x86 binary code 606.
Exemplary Core Architectures

In-Order and Out-of-Order Core Block Diagram

FIG. 7A is a block diagram illustrating both an exemplary
in-order pipeline and an exemplary register renaming, out-of-
order issue/execution pipeline according to embodiments of
the invention. FIG. 7B is a block diagram illustrating both an
exemplary embodiment of an in-order architecture core and
an exemplary register renaming, out-of-order issue/execution
architecture core to be included in a processor according to
embodiments of the invention. The solid lined boxes in FIGS.
7A and 7B illustrate the in-order pipeline and in-order core,
while the optional addition of the dashed lined boxes illus-
trates the register renaming, out-of-order issue/execution
pipeline and core. Given that the in-order aspect is a subset of
the out-of-order aspect, the out-of-order aspect will be
described.

In FIG. 7A, a processor pipeline 700 includes a fetch stage
702, a length decode stage 704, a decode stage 706, an allo-
cation stage 708, a renaming stage 710, a scheduling (also
known as a dispatch or issue) stage 712, a register read/
memory read stage 714, an execute stage 716, a write back/
memory write stage 718, an exception handling stage 722,
and a commit stage 724.

FIG. 7B shows processor core 790 including a front end
unit 730 coupled to an execution engine unit 750, and both are
coupled to amemory unit 770. The core 790 may be a reduced
instruction set computing (RISC) core, a complex instruction
set computing (CISC) core, a very long instruction word
(VLIW) core, or a hybrid or alternative core type. As yet
another option, the core 790 may be a special-purpose core,
such as, for example, a network or communication core,
compression engine, coprocessor core, general purpose com-
puting graphics processing unit (GPGPU) core, graphics
core, or the like.

The front end unit 730 includes a branch prediction unit
732 coupled to an instruction cache unit 734, which is
coupled to an instruction translation lookaside buffer (TLB)
736, which is coupled to an instruction fetch unit 738, which
is coupled to a decode unit 740. The decode unit 740 (or
decoder) may decode instructions, and generate as an output

30

40

45

50

55

12

one or more micro-operations, micro-code entry points,
microinstructions, other instructions, or other control signals,
which are decoded from, or which otherwise reflect, or are
derived from, the original instructions. The decode unit 740
may be implemented using various different mechanisms.
Examples of suitable mechanisms include, but are not limited
to, look-up tables, hardware implementations, programmable
logic arrays (PL.As), microcode read only memories (ROMs),
etc. In one embodiment, the core 790 includes a microcode
ROM or other medium that stores microcode for certain mac-
roinstructions (e.g., in decode unit 740 or otherwise within
the front end unit 730). The decode unit 740 is coupled to a
rename/allocator unit 752 in the execution engine unit 750.

The execution engine unit 750 includes the rename/alloca-
tor unit 752 coupled to a retirement unit 754 and a set of one
or more scheduler unit(s) 756. The scheduler unit(s) 756
represents any number of different schedulers, including res-
ervations stations, central instruction window, etc. The sched-
uler unit(s) 756 is coupled to the physical register file(s)
unit(s) 758. Each of the physical register file(s) units 758
represents one or more physical register files, different ones
of'which store one or more different data types, such as scalar
integer, scalar floating point, packed integer, packed floating
point, vector integer, vector floating point, status (e.g., an
instruction pointer that is the address of the next instruction to
be executed), etc. In one embodiment, the physical register
file(s) unit 758 comprises a vector registers unit, a write mask
registers unit, and a scalar registers unit. These register units
may provide architectural vector registers, vector mask reg-
isters, and general purpose registers. The physical register
file(s) unit(s) 758 is overlapped by the retirement unit 754 to
illustrate various ways in which register renaming and out-
of-order execution may be implemented (e.g., using a reorder
buffer(s) and aretirement register file(s); using a future file(s),
a history buffer(s), and a retirement register file(s); using a
register maps and a pool of registers; etc.). The retirement unit
754 and the physical register file(s) unit(s) 758 are coupled to
the execution cluster(s) 760. The execution cluster(s) 760
includes a set of one or more execution units 762 and a set of
one or more memory access units 764. The execution units
762 may perform various operations (e.g., shifts, addition,
subtraction, multiplication) and on various types of data (e.g.,
scalar floating point, packed integer, packed floating point,
vector integer, vector floating point). While some embodi-
ments may include a number of execution units dedicated to
specific functions or sets of functions, other embodiments
may include only one execution unit or multiple execution
units that all perform all functions. The scheduler unit(s) 756,
physical register file(s) unit(s) 758, and execution cluster(s)
760 are shown as being possibly plural because certain
embodiments create separate pipelines for certain types of
data/operations (e.g., a scalar integer pipeline, a scalar float-
ing point/packed integer/packed floating point/vector integer/
vector floating point pipeline, and/or a memory access pipe-
line that each have their own scheduler unit, physical register
file(s) unit, and/or execution cluster—and in the case of a
separate memory access pipeline, certain embodiments are
implemented in which only the execution cluster of this pipe-
line has the memory access unit(s) 764). It should also be
understood that where separate pipelines are used, one or
more of these pipelines may be out-of-order issue/execution
and the rest in-order.

The set of memory access units 764 is coupled to the
memory unit 770, which includes a data TLB unit 772
coupled to a data cache unit 774 coupled to a level 2 (L2)
cache unit 776. In one exemplary embodiment, the memory
access units 764 may include a load unit, a store address unit,

US 9,400,650 B2

13

and a store data unit, each of which is coupled to the data TL.B
unit 772 in the memory unit 770. The instruction cache unit
734 is further coupled to a level 2 (1.2) cache unit 776 in the
memory unit 770. The L2 cache unit 776 is coupled to one or
more other levels of cache and eventually to a main memory.

By way of example, the exemplary register renaming, out-
of-order issue/execution core architecture may implement the
pipeline 700 as follows: 1) the instruction fetch 738 performs
the fetch and length decoding stages 702 and 704; 2) the
decode unit 740 performs the decode stage 706; 3) the
rename/allocator unit 752 performs the allocation stage 708
and renaming stage 710; 4) the scheduler unit(s) 756 per-
forms the schedule stage 712; 5) the physical register file(s)
unit(s) 758 and the memory unit 770 perform the register
read/memory read stage 714; the execution cluster 760 per-
form the execute stage 716; 6) the memory unit 770 and the
physical register file(s) unit(s) 758 perform the write back/
memory write stage 718; 7) various units may be involved in
the exception handling stage 722; and 8) the retirement unit
754 and the physical register file(s) unit(s) 758 perform the
commit stage 724.

The core 790 may support one or more instructions sets
(e.g., the x86 instruction set (with some extensions that have
been added with newer versions); the MIPS instruction set of
MIPS Technologies of Sunnyvale, Calif.; the ARM instruc-
tion set (with optional additional extensions such as NEON)
of ARM Holdings of Sunnyvale, Calif.), including the
instruction(s) described herein. In one embodiment, the core
790 includes logic to support a packed data instruction set
extension (e.g., SSE, AVX1, AVX2, etc.), thereby allowing
the operations used by many multimedia applications to be
performed using packed data.

It should be understood that the core may support multi-
threading (executing two or more parallel sets of operations
orthreads), and may do so in a variety of ways including time
sliced multithreading, simultaneous multithreading (where a
single physical core provides a logical core for each of the
threads that physical core is simultaneously multithreading),
or a combination thereof (e.g., time sliced fetching and
decoding and simultaneous multithreading thereafter such as
in the Intel® Hyperthreading technology).

While register renaming is described in the context of
out-of-order execution, it should be understood that register
renaming may be used in an in-order architecture. While the
illustrated embodiment of the processor also includes sepa-
rate instruction and data cache units 734/774 and a shared .2
cache unit 776, alternative embodiments may have a single
internal cache for both instructions and data, such as, for
example, a Level 1 (L1) internal cache, or multiple levels of
internal cache. In some embodiments, the system may
include a combination of an internal cache and an external
cache that is external to the core and/or the processor. Alter-
natively, all of the cache may be external to the core and/or the
processor.

Specific Exemplary In-Order Core Architecture

FIGS. 8A-B illustrate a block diagram of a more specific
exemplary in-order core architecture, which core would be
one of several logic blocks (including other cores of the same
type and/or different types) in a chip. The logic blocks com-
municate through a high-bandwidth interconnect network
(e.g., aring network) with some fixed function logic, memory
1/0 interfaces, and other necessary /O logic, depending on
the application.

FIG. 8A is a block diagram of a single processor core,
along with its connection to the on-die interconnect network
802 and with its local subset of the Level 2 (1.2) cache 804,
according to embodiments of the invention. In one embodi-

20

30

40

45

50

55

14

ment, an instruction decoder 800 supports the x86 instruction
set with a packed data instruction set extension. An [.1 cache
806 allows low-latency accesses to cache memory into the
scalar and vector units. While in one embodiment (to simplify
the design), a scalar unit 808 and a vector unit 810 use sepa-
rate register sets (respectively, scalar registers 812 and vector
registers 814) and data transferred between them is written to
memory and then read back in from a level 1 (1) cache 806,
alternative embodiments of the invention may use a different
approach (e.g., use a single register set or include a commu-
nication path that allow data to be transferred between the two
register files without being written and read back).

The local subset of the 1.2 cache 804 is part of a global L.2
cache that is divided into separate local subsets, one per
processor core. Each processor core has a direct access path to
its own local subset of the [.2 cache 804. Data read by a
processor core is stored in its [.2 cache subset 804 and can be
accessed quickly, in parallel with other processor cores
accessing their own local L2 cache subsets. Data written by a
processor core is stored in its own [.2 cache subset 804 and is
flushed from other subsets, if necessary. The ring network
ensures coherency for shared data. The ring network is bi-
directional to allow agents such as processor cores, 1.2 caches
and other logic blocks to communicate with each other within
the chip. Each ring data-path is 1012-bits wide per direction.

FIG. 8B is an expanded view of part of the processor core
in FIG. 8A according to embodiments of the invention. FIG.
8B includes an [.1 data cache 806A part of the L1 cache 804,
as well as more detail regarding the vector unit 810 and the
vector registers 814. Specifically, the vector unit 810 is a
16-wide vector processing unit (VPU) (see the 16-wide ALU
828), which executes one or more of integer, single-precision
float, and double-precision float instructions. The VPU sup-
ports swizzling the register inputs with swizzle unit 820,
numeric conversion with numeric convert units 822A-B, and
replication with replication unit 824 on the memory input.
Write mask registers 826 allow predicating resulting vector
writes.

Processor with Integrated Memory Controller and Graphics

FIG. 9 is a block diagram of a processor 900 that may have
more than one core, may have an integrated memory control-
ler, and may have integrated graphics according to embodi-
ments of the invention. The solid lined boxes in FIG. 9 illus-
trate a processor 900 with a single core 902A, a system agent
910, a set of one or more bus controller units 916, while the
optional addition of the dashed lined boxes illustrates an
alternative processor 900 with multiple cores 902A-N, asetof
one or more integrated memory controller unit(s) 914 in the
system agent unit 910, and special purpose logic 908.

Thus, different implementations of the processor 900 may
include: 1) a CPU with the special purpose logic 908 being
integrated graphics and/or scientific (throughput) logic
(which may include one or more cores), and the cores
902A-N being one or more general purpose cores (e.g., gen-
eral purpose in-order cores, general purpose out-of-order
cores, a combination of the two); 2) a coprocessor with the
cores 902A-N being a large number of special purpose cores
intended primarily for graphics and/or scientific (through-
put); and 3) a coprocessor with the cores 902A-N being a
large number of general purpose in-order cores. Thus, the
processor 900 may be a general-purpose processor, coproces-
sor or special-purpose processor, such as, for example, a
network or communication processor, compression engine,
graphics processor, GPGPU (general purpose graphics pro-
cessing unit), a high-throughput many integrated core (MIC)
coprocessor (including 30 or more cores), embedded proces-
sor, or the like. The processor may be implemented on one or

US 9,400,650 B2

15

more chips. The processor 900 may be a part of and/or may be
implemented on one or more substrates using any of'a number
of process technologies, such as, for example, BICMOS,
CMOS, or NMOS.

The memory hierarchy includes one or more levels of
cache within the cores, a set or one or more shared cache units
906, and external memory (not shown) coupled to the set of
integrated memory controller units 914. The set of shared
cache units 906 may include one or more mid-level caches,
such as level 2 (1.2), level 3 (L3), level 4 (1.4), or other levels
of cache, a last level cache (LLC), and/or combinations
thereof. While in one embodiment a ring based interconnect
unit 912 interconnects the integrated graphics logic 908, the
set of shared cache units 906, and the system agent unit
910/integrated memory controller unit(s) 914, alternative
embodiments may use any number of well-known techniques
for interconnecting such units. In one embodiment, coher-
ency is maintained between one or more cache units 906 and
cores 902-A-N.

In some embodiments, one or more of the cores 902A-N
are capable of multithreading. The system agent 910 includes
those components coordinating and operating cores 902A-N.
The system agent unit 910 may include for example a power
control unit (PCU) and a display unit. The PCU may be or
include logic and components needed for regulating the
power state of the cores 902A-N and the integrated graphics
logic 908. The display unit is for driving one or more exter-
nally connected displays.

The cores 902A-N may be homogenous or heterogeneous
in terms of architecture instruction set; that is, two or more of
the cores 902A-N may be capable of execution the same
instruction set, while others may be capable of executing only
a subset of that instruction set or a different instruction set.
Exemplary Computer Architectures

FIGS. 10-13 are block diagrams of exemplary computer
architectures. Other system designs and configurations
known in the arts for laptops, desktops, handheld PCs, per-
sonal digital assistants, engineering workstations, servers,
network devices, network hubs, switches, embedded proces-
sors, digital signal processors (DSPs), graphics devices,
video game devices, set-top boxes, micro controllers, cell
phones, portable media players, hand held devices, and vari-
ous other electronic devices, are also suitable. In general, a
huge variety of systems or electronic devices capable of
incorporating a processor and/or other execution logic as
disclosed herein are generally suitable.

Referring now to FIG. 10, shown is a block diagram of a
system 1000 in accordance with one embodiment of the
present invention. The system 1000 may include one or more
processors 1010, 1015, which are coupled to a controller hub
1020. In one embodiment the controller hub 1020 includes a
graphics memory controller hub (GMCH) 1090 and an Input/
Output Hub (IOH) 1050 (which may be on separate chips);
the GMCH 1090 includes memory and graphics controllers to
which are coupled memory 1040 and a coprocessor 1045; the
IOH 1050 is couples input/output (/O) devices 1060 to the
GMCH 1090. Alternatively, one or both of the memory and
graphics controllers are integrated within the processor (as
described herein), the memory 1040 and the coprocessor
1045 are coupled directly to the processor 1010, and the
controller hub 1020 in a single chip with the IOH 1050.

The optional nature of additional processors 1015 is
denoted in FIG. 10 with broken lines. Each processor 1010,
1015 may include one or more of the processor cores
described herein and may be some version of the processor
900.

5

10

15

20

25

30

35

40

45

50

55

60

65

16

The memory 1040 may be, for example, dynamic random
access memory (DRAM), phase change memory (PCM), or a
combination of the two. For at least one embodiment, the
controller hub 1020 communicates with the processor(s)
1010, 1015 via a multi-drop bus, such as a frontside bus
(FSB), point-to-point interface such as QuickPath Intercon-
nect (QPI), or similar connection 1095.

In one embodiment, the coprocessor 1045 is a special-
purpose processor, such as, for example, a high-throughput
MIC processor, a network or communication processor, com-
pression engine, graphics processor, GPGPU, embedded pro-
cessor, or the like. In one embodiment, controller hub 1020
may include an integrated graphics accelerator.

There can be a variety of differences between the physical
resources 1010, 1015 in terms of a spectrum of metrics of
merit including architectural, micro-architectural, thermal,
power consumption characteristics, and the like.

In one embodiment, the processor 1010 executes instruc-
tions that control data processing operations of a general type.
Embedded within the instructions may be coprocessor
instructions. The processor 1010 recognizes these coproces-
sor instructions as being of a type that should be executed by
the attached coprocessor 1045. Accordingly, the processor
1010 issues these coprocessor instructions (or control signals
representing coprocessor instructions) on a coprocessor bus
or other interconnect, to coprocessor 1045. Coprocessor(s)
1045 accept and execute the received coprocessor instruc-
tions.

Referring now to FIG. 11, shown is a block diagram of a
first more specific exemplary system 1100 in accordance with
anembodiment of the present invention. As shown in FIG. 11,
multiprocessor system 1100 is a point-to-point interconnect
system, and includes a first processor 1170 and a second
processor 1180 coupled via a point-to-point interconnect
1150. Each of processors 1170 and 1180 may be some version
of the processor 900. In one embodiment of the invention,
processors 1170 and 1180 are respectively processors 1010
and 1015, while coprocessor 1138 is coprocessor 1045. In
another embodiment, processors 1170 and 1180 are respec-
tively processor 1010 coprocessor 1045.

Processors 1170 and 1180 are shown including integrated
memory controller (IMC) units 1172 and 1182, respectively.
Processor 1170 also includes as part of its bus controller units
point-to-point (P-P) interfaces 1176 and 1178; similarly, sec-
ond processor 1180 includes P-P interfaces 1186 and 1188.
Processors 1170, 1180 may exchange information via a point-
to-point (P-P) interface 1150 using P-P interface circuits
1178, 1188. As shown in FIG. 11, IMCs 1172 and 1182
couple the processors to respective memories, namely a
memory 1132 and a memory 1134, which may be portions of
main memory locally attached to the respective processors.

Processors 1170, 1180 may each exchange information
with a chipset 1190 via individual P-P interfaces 1152, 1154
using point to point interface circuits 1176, 1194, 1186, 1198.
Chipset 1190 may optionally exchange information with the
coprocessor 1138 via a high-performance interface 1139. In
one embodiment, the coprocessor 1138 is a special-purpose
processor, such as, for example, a high-throughput MIC pro-
cessor, a network or communication processor, compression
engine, graphics processor, GPGPU, embedded processor, or
the like.

A shared cache (not shown) may be included in either
processor or outside of both processors, yet connected with
the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the
shared cache if a processor is placed into a low power mode.

US 9,400,650 B2

17

Chipset 1190 may be coupled to a first bus 1116 via an
interface 1196. In one embodiment, first bus 1116 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation 1/O inter-
connect bus, although the scope of the present invention is not
so limited.

As shown in FIG. 11, various /O devices 1114 may be
coupled to first bus 1116, along with a bus bridge 1118 which
couples first bus 1116 to a second bus 1120. In one embodi-
ment, one or more additional processor(s) 1115, such as
coprocessors, high-throughput MIC processors, GPGPU’s,
accelerators (such as, e.g., graphics accelerators or digital
signal processing (DSP) units), field programmable gate
arrays, or any other processor, are coupled to first bus 1116. In
one embodiment, second bus 1120 may be a low pin count
(LPC) bus. Various devices may be coupled to a second bus
1120 including, for example, a keyboard and/or mouse 1122,
communication devices 1127 and a storage unit 1128 such as
a disk drive or other mass storage device which may include
instructions/code and data 1130, in one embodiment. Further,
an audio I/0O 1124 may be coupled to the second bus 1120.
Note that other architectures are possible. For example,
instead of the point-to-point architecture of FIG. 11, a system
may implement a multi-drop bus or other such architecture.

Referring now to FIG. 12, shown is a block diagram of a
second more specific exemplary system 1200 in accordance
with an embodiment of the present invention. Like elements
in FIGS. 11 and 12 bear like reference numerals, and certain
aspects of FIG. 11 have been omitted from FIG. 12 in order to
avoid obscuring other aspects of FIG. 12.

FIG. 12 illustrates that the processors 1170, 1180 may
include integrated memory and I/O control logic (“CL”) 1172
and 1182, respectively. Thus, the CL 1172, 1182 include
integrated memory controller units and include I/O control
logic. FIG. 12 illustrates that not only are the memories 1132,
1134 coupled to the CL 1172, 1182, but also that I/O devices
1214 are also coupled to the control logic 1172, 1182. Legacy
1/0 devices 1215 are coupled to the chipset 1190.

Referring now to FIG. 13, shown is a block diagram of a
SoC 1300 in accordance with an embodiment of the present
invention. Similar elements in FIG. 9 bear like reference
numerals. Also, dashed lined boxes are optional features on
more advanced SoCs. InFIG. 13, an interconnect unit(s) 1302
is coupled to: an application processor 1310 which includes a
set of one or more cores 202A-N and shared cache unit(s)
906; a system agent unit 910; a bus controller unit(s) 916; an
integrated memory controller unit(s) 914; a set or one or more
coprocessors 1320 which may include integrated graphics
logic, an image processor, an audio processor, and a video
processor; an static random access memory (SRAM) unit
1330; a direct memory access (DMA) unit 1332; and a display
unit 1340 for coupling to one or more external displays. Inone
embodiment, the coprocessor(s) 1320 include a special-pur-
pose processor, such as, for example, a network or commu-
nication processor, compression engine, GPGPU, a high-
throughput MIC processor, embedded processor, or the like.

Embodiments of the mechanisms disclosed herein may be
implemented in hardware, software, firmware, or a combina-
tion of such implementation approaches. Embodiments of the
invention may be implemented as computer programs or pro-
gram code executing on programmable systems comprising
at least one processor, a storage system (including volatile
and non-volatile memory and/or storage elements), at least
one input device, and at least one output device.

Program code, such as code 1130 illustrated in FIG. 11,
may be applied to input instructions to perform the functions
described herein and generate output information. The output

10

15

20

25

30

35

40

45

50

55

60

65

18

information may be applied to one or more output devices, in
known fashion. For purposes of this application, a processing
system includes any system that has a processor, such as, for
example; a digital signal processor (DSP), a microcontroller,
an application specific integrated circuit (ASIC), or a micro-
processor.

The program code may be implemented in a high level
procedural or object oriented programming language to com-
municate with a processing system. The program code may
also be implemented in assembly or machine language, if
desired. In fact, the mechanisms described herein are not
limited in scope to any particular programming language. In
any case, the language may be a compiled or interpreted
language.

One or more aspects of at least one embodiment may be
implemented by representative instructions stored on a
machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the logic
O Processor.

Such machine-readable storage media may include, with-
out limitation, non-transitory, tangible arrangements of
articles manufactured or formed by a machine or device,
including storage media such as hard disks, any other type of
disk including floppy disks, optical disks, compact disk read-
only memories (CD-ROMs), compact disk rewritable’s (CD-
RWs), and magneto-optical disks, semiconductor devices
such as read-only memories (ROMs), random access memo-
ries (RAMs) such as dynamic random access memories
(DRAMs), static random access memories (SRAMs), eras-
able programmable read-only memories (EPROMs), flash
memories, electrically erasable programmable read-only
memories (EEPROMs), phase change memory (PCM), mag-
netic or optical cards, or any other type of media suitable for
storing electronic instructions.

Accordingly, embodiments of the invention also include
non-transitory, tangible machine-readable media containing
instructions or containing design data, such as Hardware
Description Language (HDL), which defines structures, cir-
cuits, apparatuses, processors and/or system features
described herein. Such embodiments may also be referred to
as program products.

While certain exemplary embodiments have been
described and shown in the accompanying drawings, it is to
be understood that such embodiments are merely illustrative
of and not restrictive on the broad invention, and that this
invention not be limited to the specific constructions and
arrangements shown and described, since various other modi-
fications may occur to those ordinarily skilled in the art upon
studying this disclosure. In an area of technology such as this,
where growth is fast and further advancements are not easily
foreseen, the disclosed embodiments may be readily modifi-
able in arrangement and detail as facilitated by enabling tech-
nological advancements without departing from the prin-
ciples of the present disclosure or the scope of the
accompanying claims.

What is claimed is:

1. An apparatus comprising:

a register file including a first mask register and a second

mask register; and

execution circuitry coupled to the register file to execute a

mask update instruction, wherein in response to a single
instance of the mask update instruction, the execution

US 9,400,650 B2

19

circuitry is to invert a given number of mask bits in the
first mask register, and to invert the given number of
mask bits in the second mask register.

2. The apparatus of claim 1, wherein the given number is
the smaller one of the number of mask bits in the first mask
register having a first bit value and the number of mask bits in
the second mask register having a second bit value.

3. The apparatus of claim 2, wherein the first bit value is the
same as the second bit value.

4. The apparatus of claim 2, wherein the first bit valueis an 10

inverse of the second bit value.

5. The apparatus of claim 1, wherein the given number of
mask bits in the first mask register are either lower-order mask
bits or higher-order mask bits in the first mask register.

6. The apparatus of claim 1, wherein the given number of
mask bits in the second mask register are either lower-order
mask bits or higher-order mask bits in the second mask reg-
ister.

7. The apparatus of claim 1, further comprising:

afirst vector register associated with the first mask register,

wherein each mask bit of the first mask register indicates
whether a condition for a corresponding data element in
the first vector register is satisfied; and

a second vector register associated with the second mask

register, wherein each mask bit of the second mask reg-
ister indicates whether the condition for a corresponding
data element in the second vector register is satisfied.

8. The apparatus of claim 7, wherein further computation is
needed for a given data element when the condition for the
given data element is satisfied.

9. A method comprising:

receiving by a processor a mask update instruction speci-

fying a first mask register and a second mask register;
and

in response to a single instance of the mask update instruc-

tion, performing operations including:

inverting a given number of mask bits in the first mask
register, and

inverting the given number of mask bits in the second
mask register.

10. The method of claim 9, wherein the given number is the
smaller one of the number of mask bits in the first mask
register having a first bit value and the number of mask bits in
the second mask register having a second bit value.

11. The method of claim 10, wherein the first bit value is the
same as the second bit value.

12. The apparatus of claim 10, wherein the first bit value is
an inverse of the second bit value.

13. The method of claim 9, wherein the given number of
mask bits in the first mask register are either lower-order mask
bits or higher-order mask bits in the first mask register.

14. The method of claim 9, wherein the given number of
mask bits in the second mask register are either lower-order
mask bits or higher-order mask bits in the second mask reg-
ister.

20

30

40

45

20

15. The method of claim 9, wherein each mask bit of the
first mask register indicates whether a condition for a corre-
sponding data element in a first vector register is satisfied, and

each mask bit of the second mask register indicates
whether the condition for a corresponding data element
in a second vector register is satisfied.

16. The method of claim 15, wherein further computation
is needed for a given data element when the condition for the
given data element is satisfied.

17. A system comprising:
memory to store an input data array;

a register file including a first mask register and a second
mask register to store operands of'a mask update instruc-
tion, and a first vector register and a second vector reg-
ister associated with the first mask register and the sec-
ond mask register, respectively, to load the input data
array for vector computation; and

execution circuitry coupled to the register file to execute a
mask update instruction, wherein in response to a single
instance of the mask update instruction, the execution
circuitry is to set a given number of mask bits in the first
mask register from a first bit value to a second bit value,
and to set the given number of mask bits in the second
mask register from the second bit value to the first bit
value.

18. The system of claim 17, wherein the given number is
the smaller one of the number of mask bits in the first mask
register having the first bit value and the number of mask bits
in the second mask register having the second bit value.

19. The system of claim 17, wherein the first bit value is the
same as the second bit value.

20. The system of claim 17, wherein the first bit value is an
inverse of the second bit value.

21. The system of claim 17, wherein the given number of
mask bits in the first mask register are either lower-order mask
bits or higher-order mask bits in the first mask register.

22. The system of claim 17, wherein the given number of
mask bits in the second mask register are either lower-order
mask bits or higher-order mask bits in the second mask reg-
ister.

23. The system of claim 17, wherein each mask bit of the
first bit value in the first mask register indicates that a condi-
tion for a corresponding data element in the first vector reg-
ister is not satisfied, and wherein each mask bit of the second
bit value in the second mask register indicates that the con-
dition for a corresponding data element in the second vector
register is satisfied.

24. The system of claim 23, wherein further computation is
needed for a given data element when the condition for the
given data element is satisfied.

#* #* #* #* #*

